
Behavior Research Methods, Instruments, & Computers
2001, 33 (2), 149-158

This paper presents a software tool that automates the
analysis of sequential behavioral data. The tool was ap-
plied to the analysis of a specific kind of behavioral data,
called discrete action protocols. Discrete action protocol
data are collected as subjects are working on a task in a
computer system. A flow of high-resolution time-stamped
events can be easily collected from the application, the
input, and the output devices being used. For example, in
a study of the Tower of Hanoi (see, e.g., Simon, 1975),
which uses a direct manipulation interface in which disks
are dragged from one pole to another, discrete action pro-
tocols might include a record of each disk clicked, the
pole from which it originated, and the pole to which it was
moved. Each discrete action—mouse down at one loca-
tion and mouse up at another—would be time stamped and
saved to a log file. Each action can be unambiguously de-
fined as a discrete event, and each set of discrete action
protocols collected from subjects is a set of linear sequen-
tial events. As compared with verbal protocol data, dis-
crete action protocols are more constrained and easier to
interpret, and data from multiple subjects are easier to
aggregate. However, extensive analysis of a large volume
of discrete action protocol data is time consuming and
error prone. The building of a tool to analyze discrete ac-
tion protocols automatically not only can reduce the ef-
fect required, but also can increase objectivity by using the

same set of determinate rules throughout the entire set of
protocols.

The tool developed is called ACT-PRO (which stands for
action protocol analyzer). It provides a top-down method
to automate the analyses and can be used to facilitate the
iterative process of theory construction. ACT-PRO auto-
mates the process of matching a huge amount of data to
a researchers’ theory, and the output trace from ACT-PRO
can highlight which parts of the sequential data match
and do not match the theory. This kind of information is
very useful for researchers to extend and refine their the-
ory. However, all analyses of sequential events have much
in common, whether the sequential events are obtained
from action protocols or from more complex, naturalistic
event sequences. Hence, a review of techniques for ana-
lyzing naturalistic sequential events will be presented and
will be followed by a comparison of these techniques to
ACT-PRO. I will then focus on how ACT-PRO can be used
to analyze action protocol data and will provide examples
of applying ACT-PRO.

Finding Patterns in Sequential Events
Existing methods for finding patterns in sequential

events are either exploratory or confirmatory. Explora-
tory methods are used in situations in which the tempo-
ral structure of behavior is largely unknown. On the other
hand, confirmatory approaches involve matching the theo-
retical sequential patterns specified by researchers to the
observed sequences. Traditional methods adopt general
sequential statistical techniques to seek statistical depen-
dencies between events over time. For example, Markov
analysis and lag sequential analysis test the significance
of transitions of events and identify chains of events that
occur significantly more often than others (e.g., Bakeman
& Gottman, 1997). These techniques have been much
used, and efforts have been made to develop a standard
format for representing sequential data so that these gen-

149 Copyright 2001 Psychonomic Society, Inc.

The present research was supported by Grant IRI-9618833 from the
National Science Foundation, as well as by Grant AFOSR#F49620-97-
1-0353 from the Air Force Office of Scientific Research. Thanks to
Wayne D. Gray for the encouragement and the opportunity to develop
ACT-PRO. Thanks to Wayne D. Gray, Michael Schoelles, Christian
Schunn, Greg Trafton, Melanie Diez, Tony Harrison, Bill Liles, and
Lelyn Saner for feedback on earlier versions of this manuscript. Thanks
to Vicenc Quera and an anonymous reviewer for valuable suggestions
on improving ACT-PRO and the present paper. Correspondence should
be addressed to W.-T. Fu, George Mason University, Psychology, MS
3F5, Fairfax, VA 22030 (e-mail: wfu@gmu.edu).

ACT-PRO action protocol analyzer:
A tool for analyzing discrete action protocols

WAI-TAT FU
George Mason University, Fairfax, Virginia

This article presents a top-down approach for analyzing sequential events in behavioral data. Analy-
sis of behavioral sequential data often entails identifying patterns specified by the researchers. Algo-
rithms were developed and applied to analyze a kind of behavioral data, called discrete action proto-
col data. Discrete action protocols consist of discrete user actions, such as mouse clicks and
keypresses. Unfortunately, the process of analyzing the huge volume of actions (typically, >105) is very
labor intensive. To facilitate this process, we developed an action protocol analyzer (ACT-PRO) that
provides two levels of pattern matching. Level one uses formal grammars to identify sequential pat-
terns. Level two matches these patterns to a hierarchical structure. ACT-PRO can be used to determine
how well data fit the patterns specified by an experimenter. Complementarily, it can be used to focus
an experimenter’s attention on data that do not fit the prespecified patterns.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
ACT-PRO action protocol analyzer: A tool for analyzing discrete action
protocols

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
George Mason University,MS3F5,Fairfax,VA,22030

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

150 FU

eral sequential analysis algorithms can be applied (e.g.,
Bakeman & Quera, 1992, 1995).

The main difficulty in finding patterns in sequential
events is that researchers are seldom interested in identify-
ing a rigid chain of events but are rather interested in a fam-
ily of sequential events that share a common underlying
structural pattern. To solve this problem, researchers have
come up with different ways to measure similarity between
sequences to obtain quantitative measures of the distance
between sequences (for a good review of these measures,
see Sankoff & Kruskal, 1983). One common distance mea-
sure between two sequences is the smallest number of ele-
mentary edit operations, such as substitutions, insertions,
and deletions, that transform one sequence into another. For
example, to transform the sequence “aabcdd” to sequence
“aaabed,” one can first insert “a,” substitute “c” for “e,”
then delete “d” (see Table 1). The smallest number of ele-
mentary edit operations, and thus the distance between the
two sequences, is therefore three. Similar sequences (i.e.,
sequences that have small distances between them) can be
clustered together as representing the same underlying
structure that the researchers are interested in.

Recently, domain-specific approaches were developed
to capture patterns that are specific to the characteristics
of the data. These approaches assume that specific forms
of patterns exist in the data, and corresponding algorithms
are developed to look for these patterns. For example, al-
gorithms were developed to identify buying patterns in
large databases of customer transactions (Agrawal & Sri-
kant, 1995), surfing patterns on the World-Wide Web (Pit-
kow & Pirolli, 1999), and recurring behavioral patterns
in dyadic interactions (Magnusson, 2000). By exploiting
the characteristics of the data, these algorithms are demon-
strated to be efficient in capturing patterns that the re-
searchers are interested in.

Overview of ACT-PRO
ACT-PRO performs two levels of pattern matching.

Both levels of pattern matching can be applied to the
same data set, or either level can be used separately. The
first level involves identifying sequences of actions that
are grouped or chunked together. The second level matches
the data to a hierarchical structure specified by the re-
searcher. In the first level, ACT-PRO uses techniques in
formal grammar to capture various patterns in sequential

events. It requires the researchers to specify the struc-
tural pattern they are looking for in the data. The struc-
tural pattern is represented in the form of a grammar.
Each of the grammars has a set of grammar rules, with
each of the rules roughly corresponding to the elemen-
tary edit operations mentioned above. The formal gram-
mar representation therefore provides a natural way of
measuring distances between sequences. Multiple se-
quences that can be transformed into the same sequence
(i.e., the same structural pattern specified by the gram-
mar) by the same set of grammar rules will be clustered
together and captured by the grammar. Detailed exam-
ples will be given in the next section.

Many researchers have argued, either theoretically or
empirically, that many kinds of action protocol data can
be described by hierarchical structures (Card, Moran, &
Newell, 1983; Simon, 1996). In fact, many validations of
behavioral theories involve the validation of the hierar-
chical structures derived from those theories. Therefore,
matching a vast amount of action events to the theoreti-
cal hierarchical structure is an important step in theory
validation. In the second level of pattern matching, ACT-
PRO exploits the prominent characteristic of action pro-
tocol data and uses a simple algorithm that matches the
data to the theoretical hierarchical structure. Details of
the algorithm, as well as examples of application, will be
discussed in the following sections.

In addition to pattern matching, ACT-PRO also gener-
ates simple goodness-of-fit measures that evaluate how
good the groupings are and how well the sequences of
groups fit the hierarchical structure. These measures are
useful for evaluating the researchers’ theories. ACT-PRO
also produces output traces that highlight parts of data
that match and do not match the hierarchy. This allows re-
searchers to expand and modify their theories by focus-
ing their attention on those parts of the data that do not
match their theory.

In the following paragraphs, the basic mechanisms of
ACT-PRO will be introduced in the context of program-
ming a simple VCR . This example will enable us to il-
lustrate the mechanisms of ACT-PRO without being
sidetracked into explaining the details of an unfamiliar
technical task. The results of applying ACT-PRO to three
different sets of action protocols will be presented. The
results will help in evaluating the performance and gen-
erality of ACT-PRO. Uses, limitations, and possible exten-
sions of ACT-PRO will be discussed in the last sections.

THE ACTION PROTOCOL ANALYZER—
ACT-PRO

Basic Structure
ACT-PRO has two major components: the grouping pro-

gram, which partitions the stream of discrete actions into
sets of labeled strings, and the tracing program, which
maps the action protocols to the hierarchical structure.

Figure 1 shows a hierarchical structure of program-
ming a VCR,1 which will be used as a running example.

Table 1
Example of a Distance Measure Between Two Sequences

Sequence Transformation Elementary Edit Operations

“aabcdd”
¯ Insert “a”

“aaabcdd”
¯ Substitute “c” for “e”

“aaabedd”
¯ Delete “d”

“aaabed”

Note—Distance between the two sequences is defined as the number of
elementary edit operations that transform one sequence to another. In
this example, the distance between “aabcdd” and “aaabed” is three.

ACT-PRO ACTION PROTOCOL ANALYZER 151

In this particular hierarchical structure, the boxed nodes
denote the goals, and the unboxed nodes denote the but-
tons on the VCR that need to be pressed to accomplish
the goals.2 The top-level goal of the task is to program
the VCR to record a show. There are four subgoals under
the top-level goal: SET-START-TIME, SET-END-TIME, SET-
CHANNEL, and SET-DAY-OF-WEEK. To set the start time or
the end time, the hour, the 10-minute, and the minute have
to be set separately. Notice that the goal hierarchy does
not impose any constraints on the order of the subgoals,
so long as they are set contiguously. For example, the goals
SET-START-TIME, SET-END-TIME, SET-CHANNEL, and SET-
DAY-OF-WEEK can be accomplished in any order. Simi-
larly, for SET-START-TIME, the subgoals of SET-START-HOUR,

SET-START-10MIN, and SET-START-MIN can be set in any
order, so long as they are not separated by extraneous sub-
goals, such as SET-CHANNEL. The unboxed nodes denote
the buttons that need to be pressed to achieve the goals.
For example, to set the start hour from 2 to 4, the start-
hour button needs to be pressed twice, each time incre-
menting the start hour by one. All other goals can be ac-
complished in a similar way. Note that, in the simple VCR
interface assumed by Figure 1, the procedure for accom-
plishing each terminal goal is simply the repeated press-
ing of a single button.

Each labeled string generated by the grouping process
maps to one low-level goal (e.g., the three discrete ac-
tions—start-hour, start-hour, start-hour—map to the SET-

Figure 1. The simplified task-relevant hierarchical goal structure of a VCR interface (Gray, 2000; Gray & Fu, 2000).

Figure 2. The grouping and tracing programs of ACT-PRO. Solid lines represent direct input; dotted lines represent manual mod-
ifications based on the results of the program outputs.

152 FU

START-HOUR GOAL). In this case, the output of the grouping
process is the label SET-START-HOUR and the three discrete
actions—start-hour, start-hour, and start-hour.

The tracing program takes both the action protocols
and the output of the grouping program as inputs, maps
them to the hierarchical goal structure, and outputs a trace
of the action protocols with measures of how well they
fit the hierarchical structure (see Figure 2).

ACT-PRO requires researchers to specify in advance
the procedures or groups of actions that accomplish each
task, as well as the hierarchical structure. However, work-
ing out the complete set of procedures and the hierarchi-
cal structure for even a simple task can be demanding.
Automatizing the validation process enables researchers
to develop these procedures and the hierarchy iteratively.
Researchers can begin with a small set of procedures and
a flat hierarchy. Each of these can be modified and ex-
panded after evaluating the outputs of the grouping and
tracing programs.3

The Grouping Program of ACT-PRO
A syntactic representation of action patterns in a

procedure. The main difficulty in the grouping process
is that researchers are seldom interested in capturing any
single rigid chain of actions. Instead, action sequences that
contain the same underlying structures are usually what
the researcher is looking for. For example, if a researcher
is trying to identify action sequences that accomplish a
particular goal, he or she may want to have a single rep-
resentation that can capture all possible variations of the
action sequences that accomplish the same goal. These
variations can be true variations—for example, different
ways to accomplish the same goals adopted by different
individuals—or they can be due to errors or slips or occur
for some other reason. The grouping process has to be
flexible enough to accommodate the various alternative
action sequences that the researcher wants to categorize
under the same pattern label. We chose to use the syn-
tactic method to represent the action patterns (for a good
review, see Olson, Herbsleb, & Rueter, 1994). Formal
grammars are used to capture the variations of the action
sequences.

Formal grammar is a general representation that can
capture action patterns in various forms. It can capture
embedded structures that cannot be captured by most
methods. Each grammar has a set of grammar rules; each
rule roughly corresponds to the elementary edit opera-
tions used in measures of distances between sequences
(see Table 1), such as the Levenshtein distance (e.g., see
Sankoff & Kruskal, 1983). Therefore, the grammar rep-
resentation can be viewed as a representation of a proto-
type sequence pattern, and sequences that can be trans-
formed into this prototype pattern by applying the set of
grammar rules in the order defined by the grammar will
be clustered and captured. For example, imagine another
VCR interface, in which to set the channel from 4 to 7,
the subject must press the channel button, press an up-
arrow button three times (each time incrementing the

channel by one, hence setting the channel to 7), then press
the enter button (to confirm the changes made to the chan-
nel). However, for various reasons, users may not strictly
follow the same action sequence. The researchers may,
for example, believe that sometimes the user may press
the channel button, press the up-arrow button four times
(setting the channel to 8), press the enter button (setting
to the wrong channel), press the down-arrow button once
(setting the channel back to 7), then press the enter but-
ton again (an error correction). In another situation, the
user may press the channel button, press the down-arrow
button once (going in the wrong direction and setting the
channel to 3), press the up-arrow button four times (set-
ting the channel to 7), then press the enter button. To cap-
ture all of these variations, a grammar for the task SET-
CHANNEL can be written as in Table 2.

Clause 1 defines the grammar SET-CHANNEL as having
three objects in the specified order. Clause 2 specifies that
[object1] has to be a channel buttonpress. Clauses 3–7
specify that [object2] can be any combination of the up-
arrow, down-arrow, and enter, except that enter cannot
be the last buttonpress of [object2]. Clause 8 specifies
that [object3] has to be enter, which is also the only but-
tonpress that can terminate the action sequence captured
by the grammar. The grammar can flexibly capture many
variations of action sequences that match the set of gram-
mar rules (i.e., Clauses 1–8) in the specified order. The
syntactic representation provides a flexible mapping be-
tween the prototype sequence pattern specified by the set
of grammar rules and the vast number of variations of ac-
tion sequences collected from subjects. A detailed exam-
ple of how the mapping is done will be given below.

Parsing the action protocols by using the grammars.
The action protocols are parsed by using the set of gram-
mars constructed. Starting from the first action in the se-
quence, the actions are matched to the set of grammars in
parallel. Each action is tested against each of the grammar
rules defined in each grammar. When a matching gram-
mar is found, the next action is tested against the next
grammar rule in the same grammar. When a sequence of
actions matches all the grammar rules in a grammar in
the specified order, the sequence of actions is “captured”
by the grammar. For example, if the sequence of actions
channel, up-arrow, down-arrow, enter is matched to the
grammar in Table 2, the first action, channel, will first be
matched to Clause 2. Since they match, channel will be

Table 2
Grammar That Captures Variations of the Action Sequence

Formed by Pressing the Buttons Channel, Up-Arrow,
Down-Arrow, and Enter

SET-CHANNEL: [Object1][Object2][Object3] (1)
[Object1] ® channel (2)
[Object2] ® up-arrow (3)
[Object2] ® down-arrow (4)
[Object2] ® up-arrow [Object2] (5)
[Object2] ® down-arrow [Object2] (6)
[Object2] ® enter [Object2] (7)
[Object3] ® enter (8)

ACT-PRO ACTION PROTOCOL ANALYZER 153

taken as [object1] and according to the grammar, the next
action has to fit the grammar rules for [object2]. There-
fore, the second action, up-arrow, will be matched to
Clauses 3–7. This time, both Clause 3 and Clause 5 match
the action. Consider the case in which up-arrow is matched
to Clause 3; then, up-arrow will be taken as [object2], and
the next action will be matched to the grammar rule for
[object3] (i.e., Clause 8), which states that [object3] has
to be enter. Since the third action is down-arrow, no match
is found; the program backtracks and tries to match up-
arrow to Clause 5. Clause 5 states that the next action
will also be an [object2]; therefore, the third action, down-
arrow, will still be matched against Clauses 3–7. This
time, down-arrow will match Clause 4, and the next ac-
tion, enter, will match Clause 8, thus providing a match
between the sequence and the grammar as a whole.

It is possible that there is more than one way a stream
of actions can be matched to the set of grammars. There
is also no guarantee that the grammars constructed are
mutually exclusive (i.e., capturing completely different
sequences). Some kind of criterion is needed to decide
whether one match is better than another. For example,
consider the action sequence shown in Figure 3. Each of
the three rows shows the same action sequence, parsed
by different combinations of the hypothetical grammars
G1 to G6. The best-fitting combination can be calculated
as the percentage of actions captured by the grammars. In
the example shown in Figure 3, the number of actions cap-
tured by the combination of G1 and G2 is 9, by G3 and
G4 is 10, and by G5 and G6 is 12. Hence, the percentages
of actions explained by each of the combinations would
be 75%, 83%, and 100%, respectively. During the parsing
process, ACT-PRO picks the combination of grammars
that can explain the largest number of actions in the action
sequence as the output of the grouping program. There-
fore, in the example shown in Figure 3, G5 and G6 will
be picked as the output of the grouping process.

The Tracing Program of ACT-PRO
The tracing program takes both the action protocols

and the output of the grouping program as input and out-
puts a trace of the action protocols according to the hi-
erarchical structure provided by the researchers. A sim-
ple goodness-of-f it measure will also be generated to

indicate how well the data match to the hierarchy (details
follow). Similar to the specifications of the grammars in
the grouping process, the construction of the hierarchi-
cal structure may involve an iterative process. After the re-
sults of the tracing program are examined, the research-
ers may manually modify the hierarchical structure. This
modified hierarchy can be tested against the action pro-
tocols again, and the process can be continued until a sat-
isfactory hierarchy is obtained.

Representation of the hierarchical structure. The
hierarchical structure is represented by a set of pushdown
stacks. The pushdown stack representation preserves the
relationship between the layers in the hierarchy and sup-
ports a simple mechanism for matching the data to the
hierarchy. For example, the hierarchical structure of the
VCR programming task shown in Figure 1 can be repre-
sented as the set of pushdown stacks in Figure 4. Each of
the stacks represents the series of higher level goals that
lead to the corresponding action. The set of pushdown
stacks can then be used to trace the action protocols by a
series of push and pop operations, as will be described
below.

Tracing the action protocols by using the hierarchi-
cal structure. The tracing program partitions the action
protocols and produces a trace according to the hierar-
chical structure. The tracing process is best illustrated by
an example. By using the stacks in Figure 4, the trace
shown in Table 3 for the four consecutive actions start-hour,
start-hour, start-10min, channel, start-min can be produced
as follows. The tracing process starts with an empty push-
down stack. To lead to the execution of pressing the start-
hour button, the top-level goal PROGRAM-A-SHOW is pushed
on the stack first. Then the goal of SET-START-TIME is pushed
on the stack, on top of the goal PROGRAM-A-SHOW, followed
by the push of the goal SET-START-HOUR (Figure 5). Each
time a goal is pushed to the stack, a trace is produced in
the output. Starting from the second action, the tracing
program compares the pushdown stack with the series of
goals that leads to the second action. Since the second ac-
tion is also pressing the start-hour button, the series of
goals that leads to the second action is the same as that in
the pushdown stack. Thus, nothing is pushed or popped.
The third action, pressing the start-10min button, requires
the pushing of PROGRAM-SHOW, SET-START-TIME, and SET-
START-10MIN. To convert the current stack to the one that
leads to the action of pressing the start-10min button, the
current element at the top of the current stack, SET-START-
HOUR, has to be popped (see Figure 6), followed by push-
ing of the new element, SET-START-10MIN, to the current
stack. Similarly, to lead to the fourth action, pressing the
channel button, the tracing program pops SET-START-10MIN,
pops SET-START-TIME, and pushes SET-CHANNEL. The pro-
cess continues until the last action is traced; in this case,
all the elements in the stack are popped off one by one,
with the one on the bottom being popped off last.

Validating the hierarchical goal structure. To vali-
date the hierarchical structure, ACT-PRO classifies each
push and pop as either a match or a mismatch to the hi-
erarchical structure. The right column of Table 3 shows

Figure 3. Different combinations of grouping grammars. The
percentages indicate the number of actions captured divided by
the total number of actions.

154 FU

the results of the validation process. In the example, the
goal SET-START-TIME has to be popped prematurely. This is
because, according to the hierarchy, the pattern SET-START-
TIME has three components—SET-START-HOUR, SET-START-
10MIN, and SET-START-MIN—but now only the first two are
found in the data. There is therefore a mismatch between
the data and the hierarchy, and the tracing program will
flag the popping of SET-START-TIME as a pop mismatch,
which is defined as popping an element before it has
been completed.

The number of mismatches can be used as a goodness-
of-fit measure of how well the hierarchical structure fits
to the action protocols. If the match is low (high number
of mismatches), the researchers may wish to modify their
hierarchical structure (or even the action pattern specifi-
cations) and repeat the process until a hierarchy that has

an acceptable level of goodness of fit is obtained. The the-
ory of the researchers can be validated by examining how
well the data match the hierarchy, and the mismatches can
be examined to provide insights into how the theory can
be extended and refined.

Hardware and Software Requirements
of ACT-PRO

Both the grouping and the tracing programs are writ-
ten in Macintosh Common Lisp (MCL 4.3). MCL con-
forms to the common lisp standard, and hence ACT-PRO
should be easily transformed to run under an environment
that meets this standard. ACT-PRO requires MacOS 7.5
or greater and requires at least 16 MB of memory. The
validation program is written in Visual Basics for Excel,
which requires Excel 98 running on MacOS 7.5 or greater.
The program can be downloaded for free from http://www.
hfac.gmu.edu/~wfu/act-pro.htm. Requests for source
codes can be sent to wfu@gmu.edu.

EXAMPLES OF APPLYING ACT-PRO

ACT-PRO is applied on three different data sets: the
first from a simple VCR interface, the second from a
blocks world task, and the third from a perverse-VCR in-
terface (which is very different from the first one). The
focus of the present section is on exploring the limits and
functionality of the two programs that make up ACT-PRO.
(Examples of the use of ACT-PRO in psychological re-
search can be found in Fu & Gray, 2000a, 2000b, and
Gray & Fu, 2000.)

The Grouping Program
The uses of the grouping program focus on how the

formal grammar representation can capture the varia-
tions of action patterns in the procedures. To test the gen-

Figure 4. The set of pushdown stacks that represent the hierarchical structure in Figure 1.

Table 3
An Example of the Trace and Validation Results of
Using the Hierarchical Goal Structure of Figure 1

Trace Validation results

Push goal: PROGRAM-SHOW Push goal match
Push goal: SET-START-TIME Push goal match
Push goal: SET-START-HOUR Push goal match
Action: start-hour
Action: start-hour
Pop goal: SET-START-HOUR Pop goal match
Push goal: SET-START-10MIN Push goal match
Action: start-10min
Pop goal: SET-START-10MIN Pop goal match
Pop goal: SET-START-TIME Pop goal mismatch
Push goal: SET-CHANNEL Push goal match
Action: channel
Pop goal: SET-CHANNEL Pop goal match
Push goal: SET-START-TIME Push goal match
Push goal: SET-START-MIN Push goal match
Action: start-min
…

http://www.hfac.gmu.edu/%7Ewfu/act-pro.htm
http://www.hfac.gmu.edu/%7Ewfu/act-pro.htm

ACT-PRO ACTION PROTOCOL ANALYZER 155

erality of the grouping program, we applied the grouping
program to two sets of action protocols. The first set of pro-
tocols was collected as subjects programmed a perverse-
VCR interface on a computer. The second set of proto-
cols was collected as subjects worked on a simple blocks
world task (Fu & Gray, 2000b).

Action protocols from a perverse-VCR interface.
Action protocols were collected from 64 subjects as they
programmed a perverse-VCR interface on a computer.
In this interface, the settings are changed by first clicking
a radio button that indicates the to-be-changed setting—
for example, channel. Then, the subject repeatedly presses
the up-arrow or the down-arrow button until the desired
setting is reached. Finally, the enter button is pressed to
confirm the setting. Each subject programmed eight shows

to the criterion of two successive trials. Only trials that
ended with the show’s being successfully programmed
were analyzed. There were 1,228 successful trials, with a
total of 51,232 actions (button clicks). Sixteen grammars
were constructed for this task, each of them representing
a structural pattern. Table 2 shows an example of the gram-
mars used during the grouping process.

The matching calculated the percentage of actions ex-
plained by the grammars for each trial. Out of the 1,228
trials to which the grouping program was applied, 81.1%
of the worst-fitting trial was matched by the grammar, as
was 100% of the best fitting trial. Over all 1,228 trials, the
grammars matched the actions for an average f it of
95.1%. The percentages were calculated by the number
of actions parsed by the grammars divided by the total

Figure 5. The new element, SET-START-HOUR, is pushed to the pushdown stack. The series of elements pushed to the stack
eventually leads to the execution of actions.

Figure 6. The completed element SET-START-HOUR is popped off the pushdown stack.

Set-start-hour

Set-start-time

156 FU

number of actions in each trial. The results indicate that
the grammars were successful in capturing most of the
variations of the action sequences. Although the high per-
centage of fit may be an artifact of the task, it does show
that simple grammar rules, which correspond roughly to
the elementary edit operations, are sufficient to capture
the similarities between the many possible variations of
the action sequences.

Action protocols from a blocks world task. To test
the generality of ACT-PRO, we evaluated the grouping
program with another set of action protocols collected
from 48 subjects (16 subjects per condition) as they
worked on a blocks world task. In the task, subjects had
to copy eight colored blocks shown in the target window
(T) to the workspace window (W), using the colored
blocks in the resource window (R). All the windows were
covered by black windows. To do the task, the subjects
had to uncover the windows one at a time. The three con-
ditions differed in the perceptual–motor cost of uncov-
ering that target window (see Fu & Gray, 2000b). What
we were interested in was whether ACT-PRO could cap-
ture the sequence of window uncoverings throughout the
task. Table 4 shows the sequences of window uncoverings
in which we were interested. Table 5 shows an example
of the grammars used to capture the sequences.

Each subject had to finish 40 trials, for a total number
of 1,920 trials in the data set. The total number of window
uncoverings was 55,296. Thirteen grammars were con-
structed, each of them representing a strategy that we be-
lieved the subjects used. The grouping program calcu-
lated the percentage of window uncoverings captured by
the grammars in each trial. Out of 1,920 trials, the worst-
f itting match was 68.7%, the best-f itting match was
90.6%, and the overall average match was 82.5%. All the
variations of the strategies represented by the 13 gram-
mars (strategies) were captured, suggesting that the gram-
mar representation was successful at capturing the vari-
ations in the window-uncovering sequences for the task.

By inspecting the window-uncovering sequences that
were not captured by the grammars, we found that all in-
volved strategies that we did not expect. For example, all
13 grammars were built assuming that the subjects had
to look at the patterns of color blocks in the target win-
dow before they could start copying. However, some sub-
jects started copying color blocks without looking at the
target window, presumably doing so by pure guessing.
These strategies were therefore not captured by any of
the 13 grammars we constructed.

The action sequences required to change a setting on
the perverse VCR were much more constrained by the
interface than were the sequence of window uncoverings
in the blocks world task. The perverse-VCR interface
limited the number of possible combinations of actions
that would successfully change a setting. For the blocks
world task, the interface itself does not impose any con-
straints on the window-uncovering sequence—each of
the windows can be uncovered independently of the others.
The patterns of window-uncovering sequences emerged
purely out of the task characteristics and the processing
limits of the subjects.

The results of ACT-PRO on two different data sets
show that the syntactic representation used for grouping
is powerful enough to capture most of the variations of
action sequences. The performance of the grouping pro-
gram depends on how structured subject’s behaviors are
and how homogenous these structures are across differ-
ent subjects. These factors, in turn, depend on how many
constraints are imposed by the task, the interface, and the
processing limits of the cognitive system on subjects’
behaviors.

The Tracing Program
The tracing program partitions and maps the action

stream to the elements in the hierarchical structure and
provides the measures that facilitate validation of the re-
searchers’ theory. The set of action protocols collected as
subjects programmed the simple VCR interface was used
(Gray & Fu, 2000). The hierarchical goal structure in Fig-
ure 1 is constructed on the basis of one constructed from
previous research (Gray, 2000). Action protocols were
collected from 72 subjects; each of them programmed
four shows. Similar to the perverse-VCR interface, the
subjects had to program each show correctly twice in a
row before they could move on to the next show. This cre-

Table 4
The Basic Window-Uncovering Sequences (Strategies)

for the Blocks World Task That Are Represented
as Grammars in the Grouping Program

Window-Uncovering Sequences

TRTW
TRTRTW
TRTWTW
TRWRWRW(RW)
TRTRWRWRW(RW)
TRWRWRW
TRTRWRWRW
TRWRW
TRTRWRW
TRW
TRTRW
(TW)
RTW

Note—T, target window; R, resource window; W, workspace window.
Recurrent patterns are in parentheses. Therefore (TW) denotes any num-
ber of repetitions of the pattern TW—for example, TWTW, TWTWTW,
and so forth.

Table 5
A Sample Grammar Used for the Blocks World Task

Grammar TRTW:

TRTW: [Object1][Object2][Object3][Object4]
[Object1] ® Target
[Object1] ® Target [Object1]
[Object2] ® Resource
[Object2] ® Resource [Object2]
[Object3] ® Target
[Object3] ® Target [Object3]
[Object4] ® Workspace
[Object4] ® Workspace [Object4]

ACT-PRO ACTION PROTOCOL ANALYZER 157

ated 1,044 correct trials, with a total of 36,877 actions.
These actions were parsed into 12,761 goals and subgoals
by the tracing program of ACT-PRO. The validation pro-
gram identified 148 (1%) push mismatches and 810
(6%) pop mismatches. The goodness of fit was therefore
93%. The high level of fit to the postulated goal hierar-
chy supports the hierarchy’s psychological validity. In-
deed, in Gray and Fu (2000), the researchers were not in-
terested in the behaviors that matched the goal hierarchy
so much as they were in interpreting mismatches to the
goal hierarchy.

USES OF ACT-PRO

The Grouping Program
ACT-PRO will not induce action patterns, but it can

be used to determine how much of the data can be ac-
counted for by patterns specified by the researcher. The
two data sets we used represented different levels of anal-
ysis. The actions patterns captured in the perverse-VCR
interface (buttonpresses) had a finer grained level than
those in the blocks world task (window uncoverings). In
the perverse-VCR interface, we were interested in explain-
ing each action made. On the other hand, in the blocks
world task, we were interested in the strategies used by
the subjects. The different grains of analysis were dealt
with by building grammars that matched the grain size of
the actions that are passed to the grouping program. The
results showed that the grouping program could handle
different levels of analysis equally well.

Another use of the grouping program is to identify
changes in how the behavior streams are partitioned as
subjects, with practice, move along the skill dimension
with practice from problem solving to skilled behavior.
As their skill increases, the size of recursive action patterns
grows until it reaches the processing limits of the subjects
(Card et al., 1983). One way to keep track of this change
is to build grammars that capture recursive action patterns
of different sizes. For early trials, the best-fitting gram-
mars should be those that capture fewer numbers of ac-
tions. As the subject progresses, the best-fitting grammars
will be those that capture more actions. By looking at how
the best-matching set of grammars change across trials,
the effect of practice can be studied.

The Tracing Program
ACT-PRO will not induce hierarchical structure, but it

can be used to compare the fit of alternative hierarchical
structures or, as in the example provided above, to obtain
a goodness-of-fit measure on a single hierarchical struc-
ture. Hierarchical structures are useful in characterizing
subjects’ behaviors in different tasks or interfaces. For
example, if the researchers are interested in how different
interfaces might induce different strategies (and hence
different hierarchical behavioral patterns), alternative hi-
erarchical structures can be built and matched to the sub-
jects’ behaviors. Although hierarchical goal structures
were used in the examples provided above, ACT-PRO is

not limited to validation of goal hierarchy. In fact, ACT-
PRO can handle any hierarchical structures constructed
by the researchers, as long as the hierarchical structures
can be represented by a set of pushdown stacks.

Care must be taken in evaluating the measure of good-
ness of fit. Violations of a hierarchical structure are not
necessarily evidence that the structure is not good. Viola-
tions might represent transfer among alternative hierar-
chical structures, systematic errors owing to cognitive lim-
its interacting with the design of the task, and so on (e.g.,
see Fu & Gray, 2000a; Gray, 2000; Gray & Fu, 2000).

Finally, an intended application of ACT-PRO is in the
development and validation of analytic models. In build-
ing such models, ACT-PRO can be used to interrogate
existing data to ensure that the structures built into the
model (groups as well as hierarchies) are constrained to
those found in the data. In evaluating the model, ACT-
PRO can be applied to action protocols collected from
the model, and the results can be compared with action
protocols collected from human subjects. For complex
tasks, this use of ACT-PRO may provide a means of com-
paring a model with data that is more detailed and finer
grained than is typically possible.

LIMITATIONS

The main limitation of ACT-PRO is that it is only ca-
pable of top-down analyses. Researchers have to specify
the patterns and/or hierarchy in advance. Another limi-
tation is that since ACT-PRO works on the assumption that
structures (or action patterns) exist in subjects’ behav-
ior, the usefulness of ACT-PRO depends on whether the
interaction of the subject and the task does indeed induce
these structures, as well as in how homogenous such struc-
tures are across different subjects.

FUTURE EXTENSIONS

ACT-PRO is best suited to confirmatory analyses that
require the researcher to specify in advance the patterns
that they seek. One extension of ACT-PRO would be to
incorporate exploratory sequential data analysis tech-
niques to facilitate the generation of grammars. Another
potential extension would be to make use of the latency
information in the action protocols (i.e., the interaction
interval) in both the matching and the parsing process.
This use of latency would be particularly useful when the
researcher is interested in validating a precise cognitive
model that predicts not only the sequence of actions, but
also latencies between actions.

CONCLUSIONS

Tools for matching action protocol data to theory are
rare. A large volume of fine-grained action protocols is
easy to collect, but the analysis of the data is time con-
suming and tedious. For the three data sets described in
the evaluation section, the building of grammars, on av-

158 FU

erage, took the researchers 2–3 h, and the average run-
ning time was about 1 h. If the data sets were analyzed
one by one manually, it would have taken weeks or months
of analysis time. Using the metric of analysis time (AT)
to sequence time (ST) ratio (Sanderson & Fisher, 1994),
the AT:ST ratio for using ACT-PRO is about 1:10 (the
ST for each of the data sets was about 30–40 h). The
AT:ST ratio for hand-coding the trials reported in Gray
(2000) is estimated to be 100:1. The reduction in AT by
using ACT-PRO is therefore quite significant.

We have shown that ACT-PRO is useful in helping re-
searchers analyze discrete action protocol data. ACT-PRO
automates the process of grouping and matching the hi-
erarchical structure to the vast amount of action protocols
collected from multiple subjects. We believe that the pro-
cess that ACT-PRO automates is central to a broad range
of research interests. We believe that, with minor, task-
specific modifications, ACT-PRO can be applicable to
many other tasks.

REFERENCES

Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In
Proceedings of the Eleventh International Conference on Data Engi-
neering (pp. 1-8). Los Alamitos, CA: IEEE Computer Society Press.

Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An in-
troduction to sequential analysis (2nd ed.). New York: Cambridge
University Press.

Bakeman, R., & Quera, V. (1992). SDIS: A sequential data interchange
standard. Behavior Research Methods, Instruments, & Computers,
24, 554-559.

Bakeman, R., & Quera, V. (1995). Analyzing interaction: Sequential
analysis with SDIS and GSEQ. New York: Cambridge University
Press.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of
human–computer interaction. Hillsdale, NJ: Erlbaum.

Fu, W.-T., & Gray, W. D. (2000a). Implications of rational analysis for
interface design: Observations in a natural learning environment.
Manuscript submitted for publication.

Fu, W.-T., & Gray, W. D. (2000b). Memory versus perceptual–motor
tradeoffs in a blocks world task. In Proceedings of the Twenty-Second
Annual Conference of the Cognitive Science Society (pp. 154-159).
Hillsdale, NJ: Erlbaum.

Gray, W. D. (2000). The nature and processing of errors in interactive
behavior. Cognitive Science, 24, 205-248.

Gray, W. D., & Fu, W.-T. (2000). The influence of source and cost of
information access on correct and errorful interactive behavior. In
Proceedings of the Twenty-Second Annual Conference of the Cogni-
tive Science Society (pp. 663-668). Hillsdale: NJ: Erlbaum.

Magnusson, M. S. (2000). Discovering hidden time patterns in behav-
ior: T-patterns and their detection. Behavior Research Methods, In-
struments, & Computers, 32, 93-110.

Olson, G. M., Herbsleb, J. D., & Rueter, H. (1994). Characterizing
the sequential structure of interactive behaviors through statistical and
grammatical techniques. Human–Computer Interaction, 9, 427-472.

Pitkow, J. E., & Pirolli, P. (1999). Mining longest repeated subse-
quences to predict World Wide Web surfing. In Proceedings of the
Second USENIX Symposium on Internet Technologies and Systems
(pp. 120-124). Berkeley: University of California Press.

Sanderson, P. M., & Fisher, C. (1994). Exploratory sequential data
analysis: Foundations. Human–Computer Interaction, 9, 251-317.

Sankoff, D., & Kruskal, J. B. (Eds.) (1983). Time warps, string edits,
and macromolecules: The theory and practice of sequence compari-
son. Reading, MA: Addison-Wesley.

Simon, H. A. (1975). The functional equivalence of problem solving
skills. Cognitive Psychology, 7, 268-288.

Simon, H. A. (1996). The sciences of the artificial (3rd ed.). Cambridge,
MA: MIT Press.

NOTES

1. The complete descriptions of the goal hierarchy, the task, and sub-
ject behaviors are in Gray (2000) and Gray & Fu (2000). The goal hier-
archy shown in Figure 1 is simplified.

2. Although the example here shows a hierarchical structure of goals,
ACT-PRO is not limited to this. ACT-PRO is neutral and can handle dif-
ferent kinds of hierarchical structures.

3. The outputs of the grouping and tracing programs are linked to a
spreadsheet program (Excel 98) to facilitate display of the results.

(Manuscript received November 16, 2000;
accepted for publication February 6, 2001.)

http://www.ingentaconnect.com/content/external-references?article=/0364-0213^28^2924L.205[aid=1522749]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2932L.93[aid=1522750]
http://www.ingentaconnect.com/content/external-references?article=/1044-7318^28^299L.251[aid=1522752]
http://www.ingentaconnect.com/content/external-references?article=/0010-0285^28^297L.268[aid=295877]
http://www.ingentaconnect.com/content/external-references?article=/0743-3808^28^2932L.93[aid=1522750]

